Paper / Subject Code: 31921 / Theoretical Computer Science

[80 marks]

T.E. SEM V / C SCHEME / COMP / MAY 2023 / 23.05.2023

(3 hours)

NOTE:

- 1. Question No 1 is compulsory
- 2. Attempt any three questions from remaining.
- 3. Assume suitable data if necessary and state the same.

- a) Show that grammar represented by production rules given below is ambiguous.
 - $S \to S + S | S S | S * S | S/S | (S) | a$
 - b) Construct a Moore machine to output remainder modulo 4 for any binary number.
- c) Differentiate between NPDA and PDA.
- d) Explain Chomsky Hierarchy.

Q2.

- a) Write steps for converting CFG to CNF form. Convert the following CFG to CNF. [10] $S \rightarrow ASB \in A \rightarrow aAS \mid a \mid B \rightarrow SbS \mid A \mid bb$
- b) Convert following RE to NFA-ε and convert it to minimised DFA corresponding to it (0+11)*(10)(11+0)* [10]

O3.

- a) Construct a PDA for accepting $L = \{a^n b^m c^n \mid m, n > = 1\}$ [10]
- b) Give formal Definition of Pumping Lemma for Regular Language. Prove that the following language is not regular. L = {wrw^r | $w \in \{a,b\}^*, r \in \{c\}, |w| >= 1$ } [10]

04.

- a) Construct CFG for following
 - i. Alternate sequence of 0 and 1 starting with 0 [03]
 - ii. Do not contain 3 consecutive a over {a,b} [04]
 - iii. L= $\{x \in \{0,1\}^* \mid x \text{ has equal number of } 0\text{'s and } 1\text{'s}\}$ [03]
- b) Explain applications for FA, PDA and TM [10]

O5.

- a) Construct a Moore machine to convert all occurrences of 100 to 101 in a string over {0,1}*. convert it to equivalent Mealy Machine [10]
- b) Design a TM accepting all palindromes over {0,1} [10]
- Q6. Write short note (Solve Any 4) [20]
 - a) Decision Properties of Regular Languages
 - b) Post Correspondence Problem
 - c) Variants of Turing Machine

