Paper / Subject Code: 49831 / Theoretical Computer Science

T.E. SEM V / COMP / C SCHEME / NOV 2023 / 22.11.2023

		Duration: 3 hrs [Max Marks: 80]	
N.B		 Question No 1 is Compulsory. Attempt any three questions out of the remaining five. All questions carry equal marks. Assume suitable data, if required and state it clearly. 	[20]
	a	Differentiate Finite Automata, Push Down Automata and Turing Machine	
	b	Discuss different applications of Finite Automata	
	С	Design DFA that accepts Strings with at least 3 a's. over $\Sigma = \{a,b\}$.	
	d	Simplify the given grammar $S \rightarrow ASB \mid \epsilon$ $A \rightarrow aAS \mid a$ $B \rightarrow SbS \mid A \mid bb$	
2	a	Compare and Contrast Moore and Mealy Machines. Design Moore machine for $\Sigma = \{0,1\}$,	[10]
	b	print the residue modulo 3 for binary numbers. Design Push Down Machine that accepts $L = \{a^m b^n e^n d^m \mid m, n > 0 \}$	[10]
3	a	 i) Construct CFG for given language. L = { 0ⁱ 1^j 0^k j>i+k} ii) The grammar G is S → aB bA A → a aS bAA B → b bS aBB Obtain parse tree for the following string "aababb" and check if the grammar is ambiguous. 	[10]
	b	Explain Pumping Lemma with the help of a diagram to prove that given language is not a regular language. L={0 ^m 1 ^{m+1} m>0}	[10]
4	a	 i) Design DFA that accepts Strings that ends in either "110" or "101" over ∑={0,1}. ii) Design NFA that accepts strings starting with "abb" or "bba" 	[10]
5	b	Given NFA with epsilon, Find equivalent DFA. q1 is the initial state, q3 is final state $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[10]
5	a	Find Equivalent Greibach Normal Form (GNF) for given CFG. S → AA a A → SS b	[10]
	b	Define and design Turing Machine to accept $0^n 1^n 2^n$ over $\Sigma = \{0, 1, 2\}$.	[10]
6		Write Short notes (Any Two)	[20]
÷	a	Explain with example Chomsky Hierarchy.	
l	b	Post Correspondence Problem: 100 CCC CCC CCCC Recursive and Recursive enumerable languages.	
	d	TM-Halting Problem.	

38529

Page 1 of 1